
1

From Xiaoyao Liang

2

§Problems programming shared memory systems.
§Controlling access to a critical section.
§Thread synchronization.
§Programming with POSIX threads.
§Mutexes.
§Producer-consumer synchronization and semaphores.
§Barriers and condition variables.
§Read-write locks.

2

3

4

§Also known as Pthreads.
§A standard for Unix-like operating systems.
§A library that can be linked with C programs.
§Specifies an application programming interface

(API) for multi-threaded programming.
§The Pthreads API is only available on POSIX

systems — Linux, MacOS X, Solaris, HPUX, …

3

5

declares the various Pthreads
functions, constants, types, etc.

allocate memory space for
thread handlers

6

4

7

gcc −g −Wall −o pth_hello pth_hello . c −lpthread

link in the Pthreads library

. / pth_hello 4
Hello from the main thread
Hello from thread 0 of 4
Hello from thread 2 of 4
Hello from thread 1 of 4
Hello from thread 3 of 4

8

pthread.h

pthread_t

int pthread_create (
pthread_t* thread_p /* out */ ,
const pthread_attr_t* attr_p /* in */ ,
void* (*start_routine) (void) /* in */ ,
void* arg_p /* in */) ;

One object for
each thread.

5

9

§Opaque
§The actual data that they store is system-specific.
§Their data members aren’t directly accessible to
user code.

§However, the Pthreads standard guarantees that a
pthread_t object does store enough information to
uniquely identify the thread with which it’s
associated.

§Allocate object space before using.

10

§Prototype:
void* thread_function (void* args_p) ;

§Void* can be cast to any pointer type in C.

§So args_p can point to a list containing one or more
values needed by thread_function.

§Similarly, the return value of thread_function can point
to a list of one or more values.

6

11

§ We call the function pthread_join once for each thread.

§ A single call to pthread_join will wait for the thread associated with the
pthread_t object to complete.

12

7

13

14

§ A thread repeatedly tests a condition, but, effectively, does no useful work
until the condition has the appropriate value.

flag initialized to 0 by main thread

8

15

§ Beware of optimizing compilers, though!

§ Disable compiler optimization

§ Protect variable from optimization

int volatile flag
int volatile x

Compiler can change the program order

16

Using % so that last thread reset flag back to 0

9

17

19.8 Seconds two threads Vs. 2.5 Seconds one threads
What is the problem??

1.5 after moving the critical section out of the loop

18

§ A thread that is busy-waiting may continually use the CPU
accomplishing nothing.

§ Critical section is executed in thread order, large wait time if thread
number exceed core number.

Possible sequence of events with busy-
waiting and more threads than cores.

10

19

§ Mutex (mutual exclusion) is a special type of variable that can be used to
restrict access to a critical section to a single thread at a time.

§ Used to guarantee that one thread “excludes” all other threads while it
executes the critical section

20

11

21

22

Run-times (in seconds) of π programs using n = 108
terms on a system with two four-core processors.

12

23

§ Busy-waiting enforces the order threads access a critical section.

§ Using mutexes, the order is left to chance and the system.

§ There are applications where we need to control the order threads access the
critical section.

24

13

25

…
pthread_mutex_lock(mutex[dest]);
…
messages[dest]=my_msg;
pthread_mutex_unlock(mutex[dest]);
…
pthread_mutex_lock(mutex[my_rank]);
printf(“Thread %ld>%s\n”, my_rank, messages[my_rank]);
pthread_mutex_unlock(mutex[my_rank]);

Problem: If one thread goes too far ahead, it might access
to the uninitialized location and crash the program.

Reason: mutex is always initialized as “unlock”

26

Semaphores are not part of Pthreads;
you need to add this.

14

27

all semaphores initialized to 0 (locked)
…
messages[dest]=my_msg;
sem_post(&semaphores[dest]); /*unlock the destination semaphore*/
…
sem_wait(&semaphores[my_rank]); /*wait for its own semaphore to be unlocked*/
printf(“Thread %ld>%s\n”, my_rank, messages[my_rank]);

Semaphore is more powerful than mutex
because you can initialize semaphore
to any value

How to use mutex for the message passing?

28

§ Synchronizing the threads to make sure that they all are at the same point in a
program is called a barrier.

§ No thread can cross the barrier until all the threads have reached it.

15

29

30

16

31

We need one counter
variable for each
instance of the
barrier,
otherwise problems
are likely to occur.

32

• Busy-waiting wastes CPU cycles.

• What about we want to implement a second barrier
and reuse counter?

ØIf counter is not reset, thread won’t block at the second barrier
ØIf counter is reset by the last thread in the barrier, other threads
cannot see it.
ØIf counter is reset by the last thread after the barrier, some thread
might have already entered the second barrier, and the incremented
counter might get lost.

• Need to use different counters for different
barriers.

17

33

34

• No wasting CPU cycles since no busy-waiting

• What happens if we need a second barrier?
Ø“counter” can be reused.
Ø“counter_sem” can also be reused.
Ø“barrier_sem” need to be unique, there is potential that
a thread proceeds through two barriers but another thread
traps at the first barriers if the OS put the thread at idle for
a long time.

18

35

• Open Group provides Pthreads barrier
pthread_barrier_init();
pthread_barrier_wait();
pthread_barrier_destroy();

• Not universally available

36

§ Let’s look at an example.

§ Suppose the shared data structure is a sorted linked list of ints, and the
operations of interest are Member, Insert, and Delete.

19

37

38

20

39

40

21

41

42

§ An obvious solution is to simply lock the list any time that a thread attempts
to access it.

§ A call to each of the three functions can be protected by a mutex.

In place of calling Member(value).

22

43

§We’re serializing access to the list.
§ If the vast majority of our operations are calls to

Member, we’ll fail to exploit this opportunity for
parallelism.

§On the other hand, if most of our operations are calls to
Insert and Delete, then this may be the best solution
since we’ll need to serialize access to the list for most
of the operations, and this solution will certainly be
easy to implement.

44

§ Instead of locking the entire list, we could try to lock individual nodes.

§ A “finer-grained” approach.

23

45

46

§ This is much more complex than the original Member function.

§ It is also much slower, since, in general, each time a node is accessed, a
mutex must be locked and unlocked.

§ The addition of a mutex field to each node will substantially increase the
amount of storage needed for the list.

24

47

§ Neither of our multi-threaded linked lists exploits the potential for
simultaneous access to any node by threads that are executing Member.

§ The first solution only allows one thread to access the entire list at any
instant.

§ The second only allows one thread to access any given node at any instant.

48

§ A read-write lock is somewhat like a mutex except that it provides two
lock functions.

§ The first lock function is a read lock for reading, while the second
locks it for writing.

§ If any threads own the lock for reading, any threads that want to
obtain the lock for writing will block. But reading will not be
blocked.

§ If any thread owns the lock for writing, any threads that want to obtain
the lock for reading or writing will block in their respective locking
functions

25

49

100,000 ops/thread
99.9% Member
0.05% Insert
0.05% Delete

50

100,000 ops/thread
80% Member
10% Insert
10% Delete

